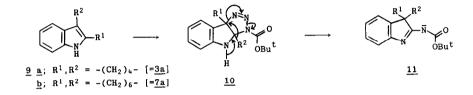
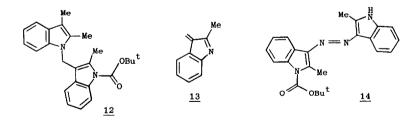

ACTION OF *tert*-BUTYL AZIDOFORMATE ON THE CONJUGATE BASES OF 1,2,3,4-TETRAHYDRO-9*H*-CARBAZOLE AND OTHER INDOLE DERIVATIVES

Dashyant Dhanak^a, Stephen Neidle^b, and Colin B. Reese^{*a} Departments of Chemistry^a and Biophysics^b, King's College, London WC2, England.

Summary. tert-Butyl azidoformate (2) reacts with the conjugate bases of 3a, 7a, 9 (R¹ = R² = CH₃), and 9 (R¹ = CH₃, R² = H) to give products [4, 8, 12, and 14, respectively] in addition to the expected N-(tert-butoxycarbonyl)indole derivatives.


1-N-(tert-butoxycarbonyl) indole (<u>1a</u>) is readily prepared¹ in high yield by treating indole first with sodium hydride and then with tert-butyl azidoformate² (<u>2</u>) in tetrahydrofuran. In an attempt to convert 1,2,3,4-tetrahydro-9*H*-carbazole (<u>3a</u>) into its 9-*N*-(tertbutoxycarbonyl) derivative by a related procedure³, we obtained the latter compound (<u>3b</u>) in only 46% yield, together with another product (m.p. 116.5°C, 22%) to which structure <u>4</u> has been assigned on the basis of microanalytical⁴ and n.m.r. spectroscopic data⁵. This assignment is supported by degradative evidence and has been confirmed by an independent synthesis (see below).


When $\underline{4}$ was treated with an excess of trifluoroacetic acid in dichloromethane solution at room temperature, $\underline{5a}$ was obtained and was isolated as a colourless hygroscopic crystalline solid, m.p. 205°C, in 52% yield. Treatment of $\underline{5a}$ with sodium nitrite in aqueous acetic acid gave the known^{6,7,8} oxindole derivative (<u>6a</u>) in 65% yield. The latter compound, which was identical [i.r., ¹H and ¹³C n.m.r. spectra] with authentic material⁸, was heated, under reflux, with Lawesson's reagent⁹ in toluene solution and the resulting product (<u>6b</u>) was treated first

with sodium hydride and then with methyl iodide in tetrahydrofuran at room temperature to give $\underline{5b}$ as a colourless oil in 55% overall yield, based on $\underline{6a}$. Ammonolysis of $\underline{5b}$ [6Mmethanolic ammonia, 140°C, 21 hr] gave $\underline{5a}$ (72% yield) which, on treatment with sodium hydride followed by *tert*-butyl phenyl carbonate in tetrahydrofuran, gave the original rearrangement product ($\underline{4}$) in 82% yield. When $\underline{7a}$, a higher homologue of $\underline{3a}$, was treated with n-butyllithium and *tert*-butyl azidoformate ($\underline{2}$) under the conditions used for $\underline{3a}$, $\underline{7b}$ and $\underline{8}$ [m.p. 130°C] were obtained and isolated in yields of 19 and 27.5%, respectively. A possible mechanism for the rearrangement reactions is indicated in Scheme 1.

Scheme 1

The above rearrangement reaction (Scheme 1) did not occur in the case of 2,3-dimethylindole (9: $R^1 = R^2 = CH_3$). Treatment of the latter compound (9: $R^1 = R^2 = CH_3$) with sodium hydride (ca. 3 mol. equiv.) followed by *tert*-butyl azidoformate (2: ca. 1.2 mol. equiv.) in tetrahydrofuran at room temperature for 14 hr gave unchanged starting material (9: $R^1 = R^2 =$ CH_3 , 39%), its 1-N-(*tert*-butoxycarbonyl) derivative (1: $R^1 = R^2 = CH_3$, 20%), and a dimeric compound (12%), m.p. 137°C, with molecular formula $C_{25}H_{28}N_2O_2$. The latter compound has been assigned structure 12 on the basis of an X-ray crystal structure determination (Figure 1). This assignment is in accordance with ¹H and ¹³C n.m.r. spectroscopic data. The mechanism for the dimerization reaction is at present unclear. However, a process involving the conjugate addition of the anion of 2,3-dimethylindole to its dehydro-derivative (13), followed by *N-tert*-butoxycarbonylation would lead to 12.

It is clear from the above discussion that tert-butyl azidoformate $(\underline{2})$ is an unsuitable reagent for the introduction of 1-N-(tert-butoxycarbonyl) protecting groups in both 2,3-cycloalkenyl (such as <u>3a</u> and <u>7a</u>) and 2,3-dialkyl indole derivatives (such as <u>9</u>; $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{CH}_3$). The latter acylating agent (<u>2</u>) should be used with caution in the 1-N-protection of any indole (and presumably also pyrrole) derivative. Thus while <u>2</u> reacts with the sodium salt of 3methylindole (<u>9</u>; $\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{CH}_3$) to give the expected 1-N-(tert-butoxycarbonyl) derivative (<u>1</u>; $\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{CH}_3$) as the sole product in 75% isolated yield, it reacts with the sodium

2018

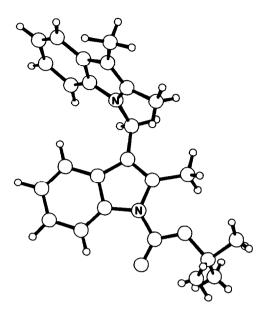


Figure 1. Computer-drawn plot of molecular structure of 12

salt of 2-methylindole (9; $R^1 = CH_3$, $R^2 = H$) to give its 1-N-(*tert*-butoxycarbonyl) derivative (1; $R^1 = CH_3$, $R^2 = H$) in only 11% yield together with a crystalline product, m.p. 165 - 167°C, to which structure 14 has been assigned¹⁰. The latter product was isolated in 60% yield.

$$Bu^{t}_{0} \xrightarrow{0}_{0} \xrightarrow{0} \xrightarrow{0}_{0} \xrightarrow{0}_{0} \xrightarrow{0}_{0} \xrightarrow{0}_{0} \xrightarrow{0}_{0} \xrightarrow{0}_{0} \xrightarrow{0$$

It was recently reported¹¹ that the 1-N-(tert-butoxycarbonyl) derivatives of pyrrole itself and a number of substituted pyrroles are obtained in good yields by treating these substrates with bis-tert-butyl dicarbonate in the presence of 4-dimethylaminopyridine in acetonitrile solution. This procedure was also used¹¹ successfully in the tert-butoxycarbonylation of indole and 3-methylindole (9; $R^1 = H$, $R^2 = CH_3$). When we became aware of the shortcomings of tert-butyl azidoformate (2) as a reagent for the tert-butoxycarbonylation of indole derivatives, we found that if 2 were replaced by tert-butyl phenyl carbonate (16) and the acylation procedure described above [i.e. treatment of the indole derivative first with sodium hydride or n-butyllithium in tetrahydrofuran] were otherwise retained, all of the substituted indoles referred to above were converted solely into their 1-N-(tert-butoxycarbonyl) derivatives. The latter compounds were all isolated in good (74-92%) yields.

Acknowledgement. One of us (D.D.) thanks the S.E.R.C. for the award of a research studentship.

REFERENCES AND FOOTNOTES

 I. Hasan, E.R. Marinelli, L.C. Lin, F.W. Fowler, and A.B. Levy, J. Org. Chem. <u>46</u>, 157 (1981).
L.A. Carpino, B.A. Carpino, P.J. Crowley, C.A. Giza, and P.H. Terry, Org. Syn. Coll. Vol. 5, 157 (1973).

- ³ n-Butyllithium (1.9*M* in hexane, 3.1 ml, 5.9 mmol) was added to a stirred solution of <u>3a</u> (1.0g, 5.9 mmol) in tetrahydrofuran at 0°C, in an atmosphere of nitrogen. The reaction mixture was allowed to warm up to room temperature and *tert*-butyl azidoformate (<u>2</u>; 0.86g, 6.0 mmol) was added. After 12 hr, water was added, and the products were worked up and chromatographed. When sodium hydride was used as base instead of n-butyllithium, <u>3b</u> and <u>4</u> were isolated in 35 and 16% yields, respectively. The conversion of <u>3a</u> into its conjugate base occurs much more quickly when n-butyllithium (15 min, room temperature) rather than sodium hydride (8 hr, room temperature) is used as base.
- ⁴ Satisfactory microanalytical data were obtained for all new crystalline compounds described.
- ⁵ The ¹H and ¹³C [δ (CDCl₃): 26.40 (*C*H₂), 28.31 (*C*H₃), 39.81 (*C*H₂), 57.84, 80.06, 110.39, 122.76, 123.60, 127.67, 138.41, 140.49, 164.80, 180.81] n.m.r. spectra were in accordance with structure <u>4</u>; M^+ = 286.1678 (calc. for C₁₇H₂₂N₂O₂: 286.1681). While the reaction between <u>3a</u> and toluene-*p*-sulphonyl azide is reported not to lead to the 2-*N*-tosyl derivative of <u>5a</u> [A.S. Bailey, R. Scattergood, and W.A. Warr, *J. Chem. Soc.* (*C*) 2479 (1971)], the reaction between *p*-chlorobenzenesulphonyl azide and 2-oxo-1,2,3,4-tetrahydro-9*H*-carbazole does lead to a rearrangement product corresponding to <u>4</u> [A.S. Bailey and M.H. Vandrevala, *J. Chem. Soc.*, *Perkin Trans. I* 1512 (1980)].
- ⁶ J.B. Patrick and B. Witkop, J. Am. Chem. Soc. 72, 633 (1950).
- ⁷ R.F. Moore and S.G.P. Plant, J. Chem. Soc. 3475 (1951).
- ⁸ R.J. Owellen, J. Org. Chem. 39, 69 (1974).
- ⁹ S. Scheibye, J. Kristensen, and S.-O. Lawesson, Tetrahedron 35, 1339 (1979).
- ¹⁰Treatment of 2-methylindole (9; R¹ = CH₃, R² = H) with picryl azide is reported [A.S. Bailey and J.J. Merer, J. Chem. Soc.(C) 1345 (1966)] to lead to a good yield of the charge transfer complex of picramide and 3,3'-azobis-(2-methylindole) [i.e. the compound which would formally be obtained if the tert-butoxycarbonyl group were removed from 14].
- ¹¹L. Grehn and U. Ragnarsson, Angew. Chem. Int. Ed. Engl. 23, 296 (1984).

(Received in UK 22 February 1985)